A Deep-Structured Fully Connected Random Field Model for Structured Inference
نویسندگان
چکیده
منابع مشابه
Fully Connected Deep Structured Networks
Convolutional neural networks with many layers have recently been shown to achieve excellent results on many high-level tasks such as image classification, object detection and more recently also semantic segmentation. Particularly for semantic segmentation, a two-stage procedure is often employed. Hereby, convolutional networks are trained to provide good local pixel-wise features for the seco...
متن کاملA Deep-Structured Conditional Random Field Model for Object Silhouette Tracking
In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivit...
متن کاملHinge-loss Markov Random Fields: Convex Inference for Structured Prediction
Graphical models for structured domains are powerful tools, but the computational complexities of combinatorial prediction spaces can force restrictions on models, or require approximate inference in order to be tractable. Instead of working in a combinatorial space, we use hinge-loss Markov random fields (HL-MRFs), an expressive class of graphical models with log-concave density functions over...
متن کاملDeep-structured hidden conditional random fields for phonetic recognition
We extend our earlier work on deep-structured conditional random field (DCRF) and develop deep-structured hidden conditional random field (DHCRF). We investigate the use of this new sequential deep-learning model for phonetic recognition. DHCRF is a hierarchical model in which the final layer is a hidden conditional random field (HCRF) and the intermediate layers are zero-th-order conditional r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2015
ISSN: 2169-3536
DOI: 10.1109/access.2015.2425304